
srlearn: A Python Library for Gradient-Boosted Statistical Relational Models

Alexander L. Hayes
ProHealth Lab

Indiana University Bloomington
hayesall@iu.edu

Abstract

We present srlearn, a Python library for boosted sta-
tistical relational models. We adapt the scikit-learn in-
terface to this setting and provide examples for how this
can be used to express learning and inference problems.

Introduction
Traditional machine learning systems have generally been
built as command line applications or as graphical user
interfaces (Hall et al. 2009). Both have advantages, but
offer fewer solutions when data acquisition, preprocess-
ing, and model development must occur together. Systems
such as scikit-learn, TensorFlow, Pyro, and PyTorch solve
this problem by embedding data cleaning and model de-
velopment as steps within general-purpose languages (Pe-
dregosa et al. 2011; Abadi et al. 2016; Bingham et al. 2019;
Paszke et al. 2017). This has also made open source imple-
mentations available to both experts and non-experts, pro-
viding each the tools to develop models.

Statistical Relational Learning (SRL) models have unique
concerns, often inherited from underlying logical systems.
This requires a data representation beyond fixed-length fea-
ture vectors, and a language bias to constrain the hypothesis
space. By embedding both operations in a manner that ma-
chine learning researchers and practitioners may already be
familiar with, we hope to speed up development time for
SRL practitioners, and provide a more user-friendly expe-
rience for data scientists and the wider machine learning
community—many of whom are not experts in SRL.

API Design in Machine Learning
The scikit-learn package (Pedregosa et al. 2011) has been
influential for its consistent application programming inter-
face (API) across a variety of machine learning models. In
scikit-learn, an algorithm type (e.g. linear support vector
classification) is implemented as a class. An estimator is an
instance of an algorithm type whose hyperparameters have
been set upon object construction. A predictor is an esti-
mator that has been fit (i.e. trained) to a dataset, and is
ready to predict (e.g. classify) new data instances. Al-
though the estimation and prediction functions are logically

Copyright © 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

distinguished in two separate protocols, it is generally a sin-
gle class that implements both a learning algorithm and the
model for applying the parameters to new data.

The aforementioned standard approach thus comprises
configuring model hyperparameters, fitting training data,
and predicting test data. However, scikit-learn has since de-
veloped into a full-fledged ecosystem that also services re-
lated functions in the modeling workflow: model selection,
hyperparameter tuning, and model validation. Furthermore,
multiple offshoots of scikit-learn have emerged to tackle
more specialized challenges, including imbalanced datasets
(Lemaı̂tre, Nogueira, and Aridas 2017), generalized linear
models (Blondel and Pedregosa 2016), and metric learning
(de Vazelhes et al. 2019).

These offshoots still fit within the framework of only re-
quiring inputs, outputs, and hyperparameters. But while this
has been influential while designing APIs for classic statis-
tical learning methods, it could also be a limitation when
extending the API to incorporate the specific needs of mod-
els from other learning paradigms (Buitinck et al. 2013).
Learning within frameworks designed for graphical mod-
els, active learning, or reinforcement learning typically re-
quires the user to specify something outside of inputs and
outputs. Graphical models require statistical independence
assumptions to either be set by hand or inferred via struc-
ture learning. Active learning requires human intervention.
Reinforcement learning needs a simulator.

Extending the API to handle new paradigms should ide-
ally meet two goals: (1) expressiveness to describe what the
user wants to achieve, and (2) complimentarity to what users
are already familiar with.

srlearn
We propose a simple extension to the scikit-learn API
for representing statistical relational models while stay-
ing close to our two goals. Specifically we incorporate a
Background object and a Database object.

The Background object incorporates knowledge about
relationships to constrain model search space, currently ex-
pressed in the language of “modes” (Srinivasan 2000). This
is then provided to the statistical relational estimator.

The Database object generalizes inputs as being com-
posed of positive examples, negative examples, and facts
about the world—each expressed as Prolog predicates.



from srlearn.rdn import BoostedRDN
from srlearn import Background
from srlearn import example_data

bk = Background(
modes=[
"friends(+person,-person).",
"friends(-person,+person).",
"cancer(+person).",
"smokes(+person).",

]
use_std_logic_variables=True,

)

clf = BoostedRDN(
background=bk,
target="cancer",

)

clf.fit(example_data.train)
clf.predict_proba(example_data.test)

Figure 1: Learning and inference on toy databases for a
smokes-friends-cancer domain. example data.train
and example data.test are Database objects.

A statistical relational estimator may then be described
in the same language as a standard scikit-learn estimator
that also incorporates background knowledge to constrain
the hypothesis space, and learn on a database of predicates
rather than vectors. Currently we have focused on incorpo-
rating methods from BOOSTSRL, a Java tool for learning
relational dependency networks and Markov logic networks
via gradient boosting (Natarajan et al. 2018). Figure 1 shows
how modules from srlearn can be put together to learn on
a built-in data set, then make predictions on a test database.

Development
srlearn is developed as an open source project on
GitHub1 and is distributed under the terms of the GNU Gen-
eral Public License v3.0 (GPL-3.0). Within the code, we
have taken several measures to aid its maintenance. This
includes formatting conventions (black, pycodestyle),
linting (pylint), and running the main branch and all pull
requests through static analysis (lgtm).

We also maintain a test suite to compare each build
against previous versions. Tests run on Linux and Windows
machines each time the code is pushed to GitHub; metrics
track (1) that all tests pass, and (2) that a sufficient code
coverage is maintained. At the time of writing, all tests pass
(results meet expectations), and code coverage is at 100%
(every line of code is visited during testing). Perfect cover-
age often grows unrealistic as projects grow, but we aim to
keep it above 90% while passing all tests.

Finally, we maintain documentation2 to help acclimate
users to the code base; this includes user guides with narra-
tive documentation and examples motivating specific tasks.

1https://github.com/hayesall/srlearn/
2https://srlearn.readthedocs.io

srlearn
(Python/Java)

BOOSTSRL
(Java/Shell)

WebKB 4.2 (0.5) 4.9 (0.3)
IMDB 10.2 (1.1) 13.0 (1.3)
UWCSE 17.5 (1.4) 18.3 (1.7)

Table 1: Seconds elapsed while learning a Boosted RDN
on three benchmark data sets. Mean (and standard devia-
tion) are calculated over ten runs. Small differences in times
may also be influenced by small differences in measurement:
epoch time (Bash) and perf time (Python).

Experiments

We expect a small overhead due to the Python interpreter and
data structures at runtime; but since the core algorithms bor-
row heavily BOOSTSRL’s Java implementations, we expect
this overhead to be negligible compared to the time spent
during learning. To evaluate this, we compare runtime in
seconds on standard benchmark data using the BOOSTSRL
command line interface and the srlearn API. We hold
the modes and hyperparameters fixed, then record the time
taken while learning a boosted RDN with the srlearn and
BOOSTSRL systems on three benchmark data sets. Table 1
shows the time averaged over ten runs of each, which we use
to conclude that the time differences are indeed negligible.3

Conclusion
It is possible that the imperative programming style here
is not ideal for SRL models—the underlying logic formal-
ism is often better expressed through declarative approaches,
which have further been suggested as ways to unify software
development with learning systems (Kordjamshidi, Roth,
and Kersting 2018).

Nonetheless, many learning frameworks have been built
around the Python ecosystem. Programming abstractions
such as the one presented here may therefore be an impor-
tant step toward bridging the gap between SRL and neural
approaches by providing developers the tools to more easily
work with both in a common environment.

In the future, we intend on extending the modeling lan-
guage with more methods that have been successful within
SRL—such as learning with advice (Odom and Natarajan
2018), incorporating a relational database for learning and
inference (Malec et al. 2017), and incorporating SRL meth-
ods such as Probabilistic Soft Logic (Bach et al. 2015) or
Conditional Random Fields (Sutton and McCallum 2007).

Acknowledgements
ALH is supported through Indiana University’s “Precision
Health Initiative” (PHI) Grand Challenge. ALH would like
to thank Sriraam Natarajan, Travis LaGrone, and members
of the StARLinG Lab at the University of Texas at Dallas.

3Scripts for reproducing this table is available on GitHub:
https://github.com/hayesall/srlearn-StarAI-2020-workshop



References
Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean,
J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; Kudlur,
M.; Levenberg, J.; Monga, R.; Moore, S.; Murray, D. G.;
Steiner, B.; Tucker, P.; Vasudevan, V.; Warden, P.; Wicke,
M.; Yu, Y.; and Zheng, X. 2016. Tensorflow: A system for
large-scale machine learning. In 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI
16), 265–283. Savannah, GA: USENIX Association.
Bach, S. H.; Broecheler, M.; Huang, B.; and Getoor, L.
2015. Hinge-loss markov random fields and probabilistic
soft logic. Journal of Machine Learning Research (JMLR).
Bingham, E.; Chen, J. P.; Jankowiak, M.; Obermeyer, F.;
Pradhan, N.; Karaletsos, T.; Singh, R.; Szerlip, P.; Horsfall,
P.; and Goodman, N. D. 2019. Pyro: Deep universal prob-
abilistic programming. Journal of Machine Learning Re-
search 20(28):1–6.
Blondel, M., and Pedregosa, F. 2016. Lightning: large-scale
linear classification, regression and ranking in Python.
Buitinck, L.; Louppe, G.; Blondel, M.; Pedregosa, F.;
Mueller, A.; Grisel, O.; Niculae, V.; Prettenhofer, P.; Gram-
fort, A.; Grobler, J.; Layton, R.; VanderPlas, J.; Joly, A.;
Holt, B.; and Varoquaux, G. 2013. API design for ma-
chine learning software: experiences from the scikit-learn
project. In ECML PKDD Workshop: Languages for Data
Mining and Machine Learning, 108–122.
de Vazelhes, W.; Carey, C.; Tang, Y.; Vauquier, N.; and Bel-
let, A. 2019. metric-learn: Metric Learning Algorithms in
Python. Technical report, arXiv:1908.04710.
Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann,
P.; and Witten, I. H. 2009. The weka data mining software:
An update. SIGKDD Explor. Newsl. 11(1):10–18.
Kordjamshidi, P.; Roth, D.; and Kersting, K. 2018. Systems
ai: A declarative learning based programming perspective.
In Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, IJCAI-18, 5464–5471.
International Joint Conferences on Artificial Intelligence Or-
ganization.
Lemaı̂tre, G.; Nogueira, F.; and Aridas, C. K. 2017.
Imbalanced-learn: A python toolbox to tackle the curse of
imbalanced datasets in machine learning. Journal of Ma-
chine Learning Research 18(17):1–5.
Malec, M.; Khot, T.; Nagy, J.; Blask, E.; and Natarajan,
S. 2017. Inductive logic programming meets relational
databases: Efficient learning of markov logic networks. In
Cussens, J., and Russo, A., eds., Inductive Logic Program-
ming, 14–26. Springer International Publishing.
Natarajan, S.; Odom, P.; Khot, T.; Kersting, K.; and Shav-
lik, J. 2018. Human-in-the-loop learning for probabilistic
programming. Proceedings of the Inaugural International
Conference on Probabilistic Programming.
Odom, P., and Natarajan, S. 2018. Human-guided learning
for probabilistic logic models. Frontiers in Robotics and AI
5:56.
Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.;
DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; and Lerer,

A. 2017. Automatic differentiation in PyTorch. In NIPS
Autodiff Workshop.
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss,
R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.;
Brucher, M.; Perrot, M.; and Duchesnay, E. 2011. Scikit-
learn: Machine learning in Python. Journal of Machine
Learning Research 12:2825–2830.
Srinivasan, A. 2000. The Aleph Manual. Technical report,
Computing Laboratory, Oxford University, Oxford, UK.
https://www.cs.ox.ac.uk/activities/programinduction/Aleph/.
Sutton, C., and McCallum, A. 2007. An Introduction to
Conditional Random Fields for Relational Learning. Cam-
bridge, Massachusetts: MIT Press. chapter 4, 93–127. in:
Introduction to Statistical Relational Learning.


