
User Friendly Automatic Construction of Background
Knowledge:

Mode Construction from ER Diagrams
Alexander L. Hayes

University of Texas at Dallas

Alexander.Hayes@utdallas.edu

Mayukh Das

University of Texas at Dallas

Mayukh.Das1@utdallas.edu

Phillip Odom

Indiana University, Bloomington

phodom@indiana.edu

Sriraam Natarajan

University of Texas at Dallas

Indiana University. Bloomington

Sriraam.Natarajan@utdallas.edu

ABSTRACT

One of the key advantages of Inductive Logic Programming systems

is the ability of the domain experts to provide background knowl-

edge as modes that allow for efficient search through the space

of hypotheses. However, there is an inherent assumption that this

expert should also be an ILP expert to provide effective modes. We

relax this assumption by designing a graphical user interface that

allows the domain expert to interact with the system using Entity

Relationship diagrams. These interactions are used to construct

modes for the learning system. We evaluate our algorithm on a

probabilistic logic learning system where we demonstrate that the

user is able to construct effective background knowledge on par

with the expert-encoded knowledge on five data sets.

KEYWORDS

Feature selection, Logical and relational learning, Entity relation-

ship models, Interaction paradigms

1 INTRODUCTION

Recently, there has been an increase in the development of algo-

rithms and models that combine the expressiveness of first-order

logic with the ability of probability theory to model uncertainty.

Collectively called Probabilistic Logic Models (PLMs) or Statistical

Relational Learning models (SRL) [7, 19], these methods have be-

come popular for learning in the presence of multi-relational noisy

data. While effective, learning these models remains a computation-

ally intensive task. This is due to the fact that the learner should

search for hypotheses at multiple levels of abstraction.

Consequently, methods whose search strategies are inspired

from Inductive Logic Programming (ILP) have been introduced to

make learning more efficient [13, 15]. These methods have demon-

strated arguably some of the best results in several benchmark and

real data sets. While effective, the key issue with these methods is

that they require the domain expert to also be an expert in ILP—

thus providing the right set of directives for learning the target

concepts. These additional directives, typically calledmodes, restrict
the search space such that the learning of these probabilistic clauses

is efficient. Many real users of these systems, especially those who

fail to learn good models with these algorithms, may not able to

select the correct modes to guide the search. The consequence is

that many of the learning procedures get stuck in a local minimum

or get timed out resulting in sub-optimal models.

One way that this problem has been addressed in literature is by

employing databases underneath the learner to improve the search

speed [11, 16, 23]. While these systems have certainly improved

the search, recent work by Malec et al. [11] clearly demonstrated

the need for modes to achieve effective learning even when using

databases. Their work showed an order of magnitude improvement

over the standard state-of-the-art PLM learning system. However,

their work also required the modes to be specified for attaining this

efficiency.

Inspired by their success, we propose a method for specifying

modes from a database perspective. Specifically, we propose to

employ the use of Entity Relationship (ER) diagrams as the graphical

tools based on which an user could specify modes. The key intuition

is that the modes specify how the search is conducted through the

space of hypotheses. When viewed from a relational perspective,

this can be seen as specifying the parts of the relational graph

that are relevant to the target concept. We provide an interface that

allows for an user to guide the PLM learners using ER diagrams. Our

interface automatically converts the user inputs on ER diagrams to

mode definitions that are then later employed to guide the search.

Our work is also inspired by the work of Walker et al. [21] where a

UI was designed to provide advice for a PLM learner. While their

UI was domain-specific, our contribution is a generalized approach

to utilize any ER diagram to automatically construct background

knowledge for logic-based learners. Our work is also related to the

other work of Walker et al. [22] where the mode construction was

automated using a layered approach which relied on successively

broadening the search space until a relevant model was found.

While their work was effective, due to the layering, scaling their

work to large tasks can be inefficient. Ours is a more restricted

approach which allows for a domain expert to specify the modes

using an ER diagram.

We make the following contributions: (1) We propose an ap-

proach to make ILP and PLM systems more usable by domain ex-

perts by creating a graphical user interface. (2)We demonstrate how

effective background knowledge can be encoded using an ER dia-

gram and provide an algorithm for the translation from UI input to

a mode specification file. (3) We show empirically the effectiveness

of our learning approach in standard PLM tasks.

KCAP’17, Dec 2017, Austin, TX, USA Alexander L. Hayes, Mayukh Das, Phillip Odom, and Sriraam Natarajan

Figure 1: An ER-Diagram illustrating 3 entities, Professors,
Students, and Courses, their attributes (ovals) and the rela-

tionships (diamonds) among them.

We first provide the necessary background knowledge of ER

diagrams and ILP systems. Then we outline the procedure for con-

verting the ER inputs to mode definitions. We finally conclude the

paper by demonstrating the effectiveness on standard PLM domains

and outlining the directions for future research.

2 BACKGROUND

As our approach uses ER diagrams as a way of constructing back-

ground knowledge through modes, we discuss both the diagram as

well as how modes are typically used in ILP.

2.1 The Entity-Relational Model

The entity-relationship model [3] allows for expressing the struc-

ture and semantics of a database at an abstract level as objects and

classes of objects (entities and entity classes), attributes of such

entities, and relationships that exist between such entity classes.

Entities are represented as rectangles, attributes as circles and re-

lationships as diamonds. While relational logic (as used in ILP) is

equally expressive, ER models are represented as graphical struc-

tures (ER diagrams) making them more intuitive and interpretable.

ER modeling is insufficient for expressing operations on the data,

but in our problem setting that has no impact. Figure 1 illustrates

an ER diagram for an example domain.

ER diagrams are commonly utilized by both database designers

and domain experts to conceptualize the structural characteris-

tics of a given domain [5]. A relational schema is an alternate

abstract representation of the structure of relational data consisting

of structural definitions of relational tables, attributes, foreign key

constraints, etc. Conceptually, the knowledge conveyed by a rela-

tional schema can be used for abstracting background/modes for

an ILP/PLM learning task. But, the limitation lies in the ambiguity

it may introduce. For instance, the relation node “TAs” (Figure 1)
can be expressed in a relational schema either as a foreign key

constraint from one entity to another or as a table with 2 columns

having the unique identifiers of the connected entities Course and
Student. The choice typically depends on the design of the system

that will use the database. ER diagrams avoid such ambiguity via

consistent syntax.

Our approach is motivated from the intuitive connections be-

tween constrained logical clause search and SQL (Structured Query

Language) query augmentation. Logical clauses are equivalent to

relational queries since, fundamentally, SQL statements are man-

ifestations of entity sets defined via relational calculus. Several

ILP/PLM learning frameworks have successfully utilized this con-

cept [11, 16]. Similarly, modes for clause learning can be interpreted

as constraints on relational query construction and query evalu-

ation. “Hints," in relational queries, are special symbolic tools to

guide the query evaluation engine to prioritize some database op-

eration over the others to enhance efficiency [2, 4, 10]. Thus, they

are akin to soft directives/constraints (modes) on the search space.

2.2 Background Knowledge for ILP

Background knowledge serves two purposes in ILP systems: de-

scribing the underlying structure of data and constraining the space

of models over which the algorithm explores. Thus, background

knowledge (set via modes) is a key component for getting rela-

tional learning algorithms to work effectively. A mode describes a

way of instantiating predicates in a clause that defines a hypoth-

esis. A mode for predicate pred with n arguments is defined as

pred(type1, type2, ..., typen). Each type describes the domain of ob-

jects which can appear as that argument, as well as whether it can

be instantiated with an input variable (+), an output variable (-), or

a constant (#) [20]. Input variables must be previously defined in

the model. Output variables are free variables that have not been

defined.

ILP learners search through the space of models in different

ways. Aleph [20] generates clauses bottom-up by constructing the

most specific explanation of examples and then generalizing while

TILDE [1] constructs clauses top-down. Our mode construction

approach is capable of generating background knowledge for a

variety of different ILP systems. To validate our approach, we make

use of a state-of-the-art ILP system called Relational Functional

Gradient Boosting (RFGB) [14] that learns a set of boosted relational

regression trees in a top-down manner. Relational regression trees

contain relational logic in the inner nodes and regression values

in the leaves. Each iteration of RFGB learns a tree (ψk) that pushes
the model in the direction of the current error. The error of the

current model (∆k−1) is computed over each training example:

∆k−1(xi) = I (yi = 1) − P(yi = 1|Pa(xi)) where I is an indicator

function for whether xi is a positive example and P represents the

current predicted probability. The final model is a sum over all

of trees (ψM = ψ0 + ψ1 + ... + ψm). For more details we refer to

Natarajan et al. [14].

3 HUMAN GUIDED MODE CONSTRUCTION

Naive approaches for mode construction may allow for exhaustive

search, enabling the ILP learner to find the best solution at the cost

of a time intensive search process. Other approaches allow for one

free variable for each atom considered. This restricts the search

space, but ignores the fact that not all areas of the search space are

equally important for a given target.

Alternatively, we consider guided construction of modes (GMC)

for ILP where the human is assumed to be a domain expert and not

an ILP expert. The expert is provided the structure of the domain

User Friendly Automatic Construction of Background Knowledge:
Mode Construction from ER Diagrams KCAP’17, Dec 2017, Austin, TX, USA

Algorithm 1 Guided Mode Construction (GMC)

1: procedure GMC(Expert E, max depth d)
2: target t , related attributes or entities I = Interface(E)
3: ModesM = ∅
4: for i ∈ I do
5: Paths = FindPaths(t , i,d)
6: for p ∈ Path do

7: M = M∪ CreateMode(p)
8: end for

9: end for

10: returnM
11: end procedure

12: procedure FindPaths(target t , related attribute/entity u, find
shortest path isShortest , max depth d)

13: Solutions = ∅, Searched = ∅,ToExplore = {t}
14: while |ToExplore | > 0 && len(ToExplore .peek()) < d do

15: n = {x1, r1,x2, r2, ..., rk−1,xk } = ToExplore .dequeue()
16: for r ∈ Rxk do

17: for Entity y , xk appearing in relation r do
18: if {n, r ,y} ∈ Searched then

19: continue

20: end if

21: if y == u | |u ∈ Ay then

22: Solutions .append({n, r ,y})
23: if isShortest then
24: return Solutions
25: end if

26: end if

27: ToExplore .enqueue({n, r ,y})
28: end for

29: end for

30: end while

31: return Solutions
32: end procedure

33: procedure CreateMode(Path p)
34: ModesM = ∅
35: for {xi , ri ,xi+1} ∈ p do

36: for Term tj ∈ ri do
37: if tj == ei then
38: tj = +ej
39: else if tj ∈ A then

40: tj = #ej
41: else

42: tj = −ej
43: end if

44: end for

45: M .append(ri (t0, t1, ..., tn))
46: end for

47: returnM
48: end procedure

in a graphical user interface that allows the expert to interact with

the Entity-Relationship diagram. The target entity about which

the model will be learned is marked and the expert is responsible

for marking all of the attributes which are relevant to the target.

Then, we find paths through entities and relations that are able to

connect the target feature with all of the related entities
1
and their

attributes. As we describe in more detail later, these paths are the

basis for constructing the modes.

3.1 An Illustrative Example

Consider a set of data involving professors, students, and courses,

with some associated attributes and relationships between each.

Figure 2(a) shows such an ERD where Grade (marked in red) was

identified by an expert as being an important attribute for predicting

Tenure (marked in blue). GMC first connects the target concept to

the related concepts by finding paths from one to another in the ER

diagram. Figure 2(b) shows two paths that connect Tenure to Grade.
Once these paths are established, variables can be set as being

open (-), closed (+), or grounded (#) based on the order in which

entities (variables) appear. Since Tenure is the target concept which
everything should be learned with relation to, the conversion pro-

cess begins with Tenure(+Professor).
Modes are added to allow the ILP learner to search along the path.

We show each step in one path and the corresponding modes that

would be generated in Table 1. Note that the entities and attributes

are highlighted in different colors to show which arguments have

the same type. The first time a type (Student ,Course) is introduced
along the path, the mode is set to − allowing a free variable to be

introduced during the search. Subsequently, appearances of a type

have modes that are set to +, forcing a previous variable to be used

during search. As Grade is an attribute (as opposed to an entity), it

will be grounded using the # mode.

Clause 1 in Table 1 gives an example of a clause that could be

generated by an ILP system with the specified modes. The English

interpretation of this rule is that tenure depends on the grades of

students who are advised by a professor.

3.2 The Algorithm

The goal of GMC (Algorithm 1) is to guide the learner by construct-

ing background knowledge based on input from a human user. This

background knowledge consists of a set of modes that defines the

search space for an ILP learner, enabling it to find a reasonable hy-

pothesis efficiently. We have created a user interface that allows for

a human domain expert to provide relevant attributes or entities for

a given target (line 2). GMC constructs modes that allow these rele-

vant attributes or entities to appear in the model. Thus, the two key

steps in GMC are 1) finding paths in the ER diagram (FindPaths)

and 2) generating modes from those paths (CreateMode). We now

discuss each of these steps.

3.2.1 FindPaths. Given the target t and a relevant attribute or

entity u, we find paths between them in the ER diagram. A path

includes the set of entities and relationships which together relate

t to u. Each path p = (t , rt ,x1, r1,x2, r2, ..., rk−1,xk) consists of
attributes or entities ({xi }) and relations ({r j }). We explore the set

of all paths in a breadth first manner starting from t . At each step,

we select from among the shortest paths to expand. Assume xk

1
Note that ERDs represent entity sets/classes/types and not actual instances or entities

to be precise. However, since in the context of our approach we never deal with

instances, we use the term "entity" to denote entity classes for brevity

KCAP’17, Dec 2017, Austin, TX, USA Alexander L. Hayes, Mayukh Das, Phillip Odom, and Sriraam Natarajan

(a) Target: ‘Tenure’. Informative/important: ‘Grade’, selected by user. (b) The equidistant shortest paths between Tenure and Grade.

Figure 2: Illustrative example showing knowledge guided walks on the ERD, given in Figure 1, for mode construction.

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

Path 1 Tenure Pro f essor Advises Student Takes Grade

Modes 1 Tenure(+ Pro f) Advises(+ Pro f ,− Stud) Takes(+ Stud ,−Course, # Grade)
Clause 1 Tenure(p) ∧Advises(p, s) ∧Takes(s, c,A+)

Table 1: Each step of a path and corresponding modes generated by GMC.

is the current end of the selected path. We denote Rxk as the set

of relations in which entity xk appears. Path p is then extended

for each relation r ∈ Rxk by creating a path for each entity that

appears in r .
GMC finds a path when it reaches u (if u is an entity) or when it

reaches an entity y for which u is an attribute (u ∈ Ay). There are
two potential settings corresponding to the number of paths to be

found. If isShortest is set to true , it will find a shortest path. Other-

wise, it will find all paths up to a particular depth d . Our hypothesis
is that finding all paths will yield background knowledge that en-

compass the best model while finding the shortest path will yield

the most efficient set of modes that still allow the learner to find

acceptable models. Note that the shortest path can be considered

the most simple way to relate t and u and such simple knowledge

is the basis for many learning algorithms.

3.2.2 CreateModes. Given a single path p found by FindPaths,

we now create a set of modes that will guide the search. As described

previously, a mode is specified for a particular predicate. Each

argument of the mode specifies the attribute type (defined by the

structure of the ER diagram) as well as how new variables/constants

can be introduced. For each relationship in the path p, we define
a new mode. As mentioned earlier, the number and types of the

arguments are defined by the structure of the ER diagram. We also

assume that arguments corresponding to attribute values (e.g. the

value of blood pressure or grade in a course) are considered as

constants (#). Thus, we only need to describe selecting between

input/output variables.

For each pair of relations in the path connected through an entity

((ri ,xi+1, ri+1) ∈ p), we generate a modemri+1 for ri+1. We denote

r
x j
k to be the argument of relation rk that has associated type x j . We

set the argument a = rxi+1i+1 as an input variable. All other arguments

are set as an output variable (∀y∈Arдs(ri+1)\a r
y
i+1). Note that there

could be multiple arguments with the same type (|a | ≥ 0). If there

are more than one, we generate a mode for each argument in a as

an input variable and treat all others as output variables.

The set of modes generated by GMC (M) can be used directly for

ILP search. As GMC allows for the domain expert to only provide

input on the ER diagram, no expertise in mode construction is

required. We now describe our interface in more detail.

3.3 The Interface

The primary objective of our approach is to facilitate a domain

expert, having limited understanding of ILP, in creating suitable

modes as per the given problem. This necessitates an intuitive and

user-friendly interface. We have developed a GUI (Figure 3) that

provides a user, having basic understanding of entities and relations,

with the tools to build ER diagrams from scratch or load existing

ones and annotate them with knowledge about targets and informa-

tive attributes/entities. The interface is designed for allowing the

user to drag shapes and arrows to construct nodes and edges of a ER

diagram as well as to select any node by double clicking on it to set

its properties from the drop-down menus in the left pane. The prop-

erties include (1) whether the relation/attribute node is the target
(2) whether the attribute/relation is important/informative/predictive
and (3) if an attribute is multi-valued or binary. Note that if the data

is stored in a relational database, an ER diagram can be constructed

automatically to some degree of fidelity. But, in most cases, the

sanity or the quality of the ER-Diagrams are subject to the database

designer’s choice.

User Friendly Automatic Construction of Background Knowledge:
Mode Construction from ER Diagrams KCAP’17, Dec 2017, Austin, TX, USA

Figure 3: The Interface. It provides a drag-and-drop console

with drop downs for annotating the ERD. As mentioned ear-

lier: rectangles, diamonds, and ellipses/circles represent en-

tities, relations, and attributes respectively. Here, “Rating"

is annotated as the target and the “Popularity" attribute is

annotated as important.

4 EXPERIMENTS

We pose the following questions to evaluate the effectiveness and

efficiency of our approach (GMC) in background knowledge con-

struction.

Q1: Does GMC facilitate the learner to optimally explore the

hypothesis space (performance)?

Q2: Can GMC enhance efficiency via sufficiently constraining

the search space?

Q3: Do simple (Shortest Path) modes generate robust models?

Q4: What is the importance of human guidance?

We discuss our results based on two scenarios, (1) searching

all paths from our target to our predicates, and (2) exploring the

shortest paths. We compare our approach against two baselines: (a)

modes encoded by an ILP expert
2
, and (b) mode construction based

on depth-restricted random paths.

Note that a achieves similar performance to walking from the

target to every feature in the domain at a lower average training

time. b is inspired by the success of random walk algorithms that

are capable of solving many challenging tasks [9].

The system has two components, (a) a platform-independent

GUI component for creation and annotation of ER diagrams and

(b) the mode construction from the annotated diagram which is

designed to be compatible with any ER diagramming tool given a

common intermediate representation.

We have used the state-of-the-art ILP structure/parameter learn-

ing framework Relational Functional Gradient Boosting [15] as the

test-bed for evaluating the quality of automatically constructed

modes.

4.1 Domains

We use four standard ILP/PLM datasets, namely CiteSeer, WebKB,

Cora, and IMDB, for an empirical evaluation of our automatic mode

construction system. “facts" refers to the evidence (all the relations

2
Discussion on manual mode construction is beyond the scope of this paper.

between different objects that are true in the given domain) and

“examples" refers the total number of positive and negative (true

and false) target relations/attributes/features across each cross-

validation fold.

CiteSeer [18] dataset was created for information extraction and

citation matching. It has 121,891 facts and 116,679 examples split

across four cross-validation folds, each corresponding to a different

topic. Our goal was to predict which field the title of the paper cor-

responded to (infield_ftitle), and the fourteen other predicates

are based on tokens and their relative positions in a document.

WebKB [12] is a consolidated dataset of links among departmental

web pages from four universities (Cornell University, University

of Texas, University of Washington, and University of Wisconsin)

each grouped into one of four cross-validation folds. It has 1912

facts and 747 examples, where the target is to predict faculty
based on several predicates (courseProf, courseTA, project, and
samePerson).
Cora [18], like CiteSeer, is about citation matching, with the key

difference being the type of relations that are captured. The dataset

consists of 6,541 facts and 62,715 examples split into five cross-

validation folds. The target is to predict if 2 citations have the same

author (sameAuthor).
IMDB [12] represents relations between movies and the people

who work on them, as well as several attributes of such movies

and people. People can either be an actor or a director (mutually

exclusive), and the goal is to predict whether an actor worked under

a certain director (workedUnder). In total there are 664 facts and

5794 examples.

UW-CSE is an anonymized representation of the staff and students

of five computer science departments distributed across five cross-

validation folds; consisting of 5121 facts and 94,000 examples. The

goal is to predict who advises whom (advisedby).

4.2 Experimental Setup

Our GMC algorithm has two settings, Walk All Paths for walking
all paths on the graph from the user-specified target to each selected

feature, and Walk Shortest Path for finding only a shortest path

from the target to each selected feature.

Experiments were performed on a server with twenty Intel Xeon

E5-2690 CPUs clocked at 3.00GHz with no other processes on the

server which might interfere with training time. To compare perfor-

mance for each method, we report the mean and standard deviation

of the training time,AUC ROC, andAUC PR across 5 cross-validation

folds and 10 independent runs for every dataset and number of fea-

tures. The settings (namely: negative:positive ratio and #literals at

each tree-node) of the underlying PLM learner, ‘RFGB’, were kept

consistent across all the evaluated approaches and 10 trees were

learned in each case.

Features (attributes/relations) the expert annotates as impor-

tant/informative are arranged in the order in which they were

selected. In the experimental results (Figures 4, 5 & 6), the x-axis

represents this ordering, and the respective values for each point

represents the performance of a horizontal slice of all predicates

up to and including that point. This shows how each additional

predicate influences performance/training time.

KCAP’17, Dec 2017, Austin, TX, USA Alexander L. Hayes, Mayukh Das, Phillip Odom, and Sriraam Natarajan

(a) CiteSeer Avg. Training Time (b) CiteSeer Avg. AUC ROC (c) CiteSeer Avg. AUC PR

(d) WebKB Avg. Training Time (e) WekKB Avg. AUC ROC (f) WebKB Avg. AUC PR

Figure 4: Results for CiteSeer and WebKB Datasets; Top row: Citeseer, Bottom row: WebKB. Left: Efficiency - Training time

(lower is better), Middle & Right: Performance - Average AUC ROC and AUC PR respectively (higher is better).

4.3 Experimental Results

From Figures 4, 5 and 6 we observe that both settings of our GMC

algorithm outperforms Random Walk in 3 of the datasets (Cite-

Seer/WebKB in AUC ROC and CiteSeer/WebKB/UW-CSE in AUC

PR). The difference is more pronounced earlier in the learning curve

when fewer paths are being found. As expected, when the number of

paths increase, the performance of Random Walk often approaches

GMC. Both of our GMC approaches are capable of matching the

performance of ILP-expert modes, often with very few informative

predicates marked (except in the case of CiteSeer which requires

additional marked predicates). Thus, our GMC methods generate

modes that facilitate effective ILP search (Q1).

While our GMC approaches generate high performance, they

also constrain the search space to allow for efficient models to

be learned. The training time of Random Walk varies: it is lower

than our approaches in three datasets (WebKB/Cora/IMDB) and

higher in CiteSeer and UW-CSE. Even though RandomWalk is more

efficient, it is less effective (WebKB/Cora) than our approaches.

When compared to the ILP-expert modes, our GMC approaches are

significantly more efficient in all domains except Cora, whereWalk
All Paths performs similarly to ILP-expert modes. Overall, both of

our GMC approaches are capable of learning more efficient models

than the baseline while also achieving high performance (Q2).

While both variants of our GMC algorithm (Walk All Paths and
Walk Shortest Path) compare favorably to the other baselines, we

now discuss their differences. Intuitively,Walk Shortest Path should

have an efficiency advantage overWalk All Paths. This is demon-

strated in two domains (WebKB/Cora) where Walk Shortest Path
achieves similar performance toWalk All Paths while having sig-
nificantly lower training time. In all other domains, both variants

perform similarly. This suggests that the shortest explanation is

often sufficient and allows for a robust and efficient search (Q3).

To better comprehend the role of human guidance (Q4), let us

consider two—not necessarily distinct—aspects. Primarily, human

guidance acts as search space constraints for the ILP learner to

efficiently search for models. Hence, careful encoding of modes is

necessary to achieve comparable, at times better, performance than

a super-exponential exhaustive search. Random Walks can manage

to reduce the search space by working with randomly sampled

regions. However, as the results illustrate (Figures 4(e), 4(f), etc.),

it may not result in robust models. The other aspect is knowledge

about what the most important features/nodes are in automatic

mode construction. The empirical results illustrate that, across all

datasets and all empirical measurements, there exists a convergence

User Friendly Automatic Construction of Background Knowledge:
Mode Construction from ER Diagrams KCAP’17, Dec 2017, Austin, TX, USA

(a) Cora Avg. Training Time (b) Cora Avg. AUC ROC (c) Cora Avg. AUC PR

(d) IMDB Avg. Training Time (e) IMDB Avg. AUC ROC (f) IMDB Avg. AUC PR

Figure 5: Results for Cora and IMDB Datasets; Top row: Cora, Bottom row: IMDB. Left: Efficiency - Training time (lower is

better), Middle & Right: Performance - Average AUC ROC and AUC PR respectively (higher is better).

(a) UW-CSE Avg. Training Time (b) UW-CSE Avg. AUC ROC (c) UW-CSE Avg. AUC PR

Figure 6: UW-CSE results. Left: Efficiency - Training time (lower is better), Middle & Right: Performance - Average AUC ROC

and AUC PR respectively (higher is better).

point where including additional guidance (annotations of impor-

tant features) no longer leads to better performance. IMDB requires

all four predicates to be taken into account; but in CiteSeer, WebKB,
and Cora: performance no longer improves after predicates 9, 3, and

KCAP’17, Dec 2017, Austin, TX, USA Alexander L. Hayes, Mayukh Das, Phillip Odom, and Sriraam Natarajan

1, respectively. In all cases except Cora, training time continues to

increase slightly while overall performance stabilizes. The domain

expert is essential for providing the initial ER model as well as

annotating what the most important features/nodes are.

5 CONCLUSION

We considered the problem of capturing domain expert knowledge

in the context of learning first-order probabilistic models. We devel-

oped a solution based on entity relationship diagrams that allows

the domain expert to provide relevant knowledge effectively for

making the search process efficient. Our solution is inspired by

the observation that most probabilistic logic models can be seen

as learning a probabilistic model over a relational graph in the

lines of probabilistic relational models [6] and probabilistic entity-

relational models [8]. Given this observation, the domain expert

identifies relevant nodes in the ER diagram which translates to

providing appropriate modes for a clause learning system. Our ex-

periments on standard PLM domains demonstrate the effectiveness

of our proposed approach. Extending this system to actively solicit

advice as needed [17] is a possible future direction. Allowing for

incomplete/noisy and even competing advice is another direction.

Finally, extending the interface to allow for knowledge capture in

other learning frameworks such as sequential decision-making in

relational models, relational deep networks, and other relational

models remain an interesting direction for future research.

ACKNOWLEDGEMENTS

Mayukh Das and Sriraam Natarajan gratefully acknowledge the

support of the CwC Program Contract W911NF-15-1-0461 with the

US Defense Advanced Research Projects Agency (DARPA) and the

Army Research Office (ARO). Phillip Odom and Sriraam Natarajan

acknowledge the support of the Army Research Office (ARO) grant

number W911NF-13-1-0432 under the Young Investigator Program.

REFERENCES

[1] H. Blockeel. Top-down induction of first order logical decision trees. AI Commun.,
12(1-2), 1999.

[2] N. Bruno, R. Ramamurthy, and S. Chaudhuri. Flexible query hints in a relational

database, May 29 2012. US Patent 8,190,595.

[3] P. P.-S. Chen. The Entity-Relationship Model–Toward a Unified View of Data.

ACM Transactions on Database Systems (TODS), 1(1):9–36, 1976.
[4] A. Diab, S. A. Gatz, S. Kapur, D. Ku, C. Kung, P. Hoang, Q. Lu, L. Pogue, Y. K. Shen,

N. Shi, et al. Search system using search subdomain and hints to subdomains in

search query statements and sponsored results on a subdomain-by-subdomain

basis, Mar. 3 2009. US Patent 7,499,914.

[5] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database Systems, Second Edition.
Pearson Education, Inc, 2009.

[6] L. Getoor, N. Friedman, D. Koller, and A. Pfeffer. Learning probabilistic relational

models. Relational Data Mining, S. Dzeroski and N. Lavrac, Eds., 2001.
[7] L. Getoor and B. Taskar. Introduction to Statistical Relational Learning. MIT Press,

2007.

[8] D. Heckerman, C. Meek, and D. Koller. Probabilistic models for relational data.

Technical Report MSR-TR-2004-30, March 2004.

[9] N. Lao and W. W. Cohen. Relational retrieval using a combination of path-

constrained random walks. Machine learning, 81(1):53–67, 2010.
[10] G. M. Lohman, E. J. Shekita, D. E. Simmen, and M. S. Urata. Relational database

query optimization to perform query evaluation plan, pruning based on the

partition properties, July 18 2000. US Patent 6,092,062.

[11] M. Malec, T. Khot, J. Nagy, E. Blasch, and S. Natarajan. Inductive logic program-

ming meets relational databases: An application to statistical relational learning.

In ILP, 2016.
[12] L. Mihalkova and R. Mooney. Bottom-up learning of Markov logic network

structure. In ICML, pages 625–632, 2007.

[13] S. Natarajan, K. Kersting, T. Khot, and J. Shavlik. Boosted Statistical Relational
Learners: From Benchmarks to Data-Driven Medicine. Springer, 2015.

[14] S. Natarajan, T. Khot, K. Kersting, B. Gutmann, and J. Shavlik. Gradient-based

boosting for statistical relational learning: The Relational Dependency Network

case. MLJ, 2012.
[15] S. Natarajan, T. Khot, K. Kersting, B. Guttmann, and J. Shavlik. Boosting Relational

Dependency networks. In ILP, 2010.
[16] F. Niu, C. Ré, A. Doan, and J. Shavlik. Tuffy: Scaling up statistical inference in

markov logic networks using an rdbms. CoRR, abs/1104.3216, 2011.
[17] P. Odom and S. Natarajan. Actively interacting with experts: A probabilistic logic

approach. In ECML, 2016.
[18] H. Poon and P. Domingos. Joint inference in information extraction. In AAAI,

pages 913–918, 2007.

[19] L. D. Raedt, K. Kersting, S. Natarajan, and D. Poole. Statistical relational artificial
intelligence: Logic, probability, and computation. Morgan & Claypool Publishers,

2016.

[20] A. Srinivasan. The Aleph Manual, 2004.
[21] T. Walker, G. Kunapuli, N. Larsen, D. Page, and J. Shavlik. Integrating knowledge

capture and supervised learning through a human-computer interface. In KCAP,
2011.

[22] T. Walker, C. O’Reilly, G. Kunapuli, S. Natarajan, R. Maclin, D. Page, and J. Shavlik.

Automating the ILP Setup Task: Converting User Advice about Specific Examples

into General Background Knowledge. In International Conference on Inductive
Logic Programming, pages 253–268. Springer, 2010.

[23] Q. Zeng, J. M. Patel, and D. Page. Quickfoil: scalable inductive logic programming.

Proceedings of the VLDB Endowment, 2014.

	Abstract
	1 Introduction
	2 Background
	2.1 The Entity-Relational Model
	2.2 Background Knowledge for ILP

	3 Human Guided Mode Construction
	3.1 An Illustrative Example
	3.2 The Algorithm
	3.3 The Interface

	4 Experiments
	4.1 Domains
	4.2 Experimental Setup
	4.3 Experimental Results

	5 Conclusion
	References

