Dynamic Bayesian Rule Learning for Interpretable Time Series Prediction Alexander L. Hayes Lucas Newman-Johnson David Crandall Computer Vision Lab, Indiana University, Bloomington

All prediction problems involve time

Many need to model time explicitly: weather, object tracking, or outcomes of clinical trials. We're interested in *learning interpretable models*^[1] for how variables interact to influence an outcome. We extend ideas for learning constrained Bayesian networks^[2] to the time series domain, resulting in **Dynamic Bayesian Networks** from which we extract *decision lists* and likelihoods from.^[3]

We motivate with two datasets

(1) A synthetic set where symptoms are caused by changes in blood pressure and heart rate, and (2) the UCI Diabetes dataset that tracked glucose, insulin doses, and hypoglycemia symptoms.

IF X THEN Y: Likelihood = 2.0

(Left) Five users from the synthetic set: heart rate in blue, blood pressure in orange. (Right) User 55's blood glucose measurements over six months.

Extracting Dynamic Bayesian Rules (DBRs)

The order of observations implies a *constraint graph* on how variables can interact. We fit a structure on (time, variable, value) triples, unroll time steps into a Bayesian network, perform local search on a target variable, and extract rules from the final structure.

We define success as maximizing accuracy and minimizing the number of rules

Decision trees learn CNF rules, so we compare			Decision Tree (Baseline)	Dynamic Bayesian Rules
with trees learned on the trajectories under cross	on the cross are e less (Synthetic, 1500 examples)	# Rules (Mode)	4	3
validation. DBRs are shorter, but may be less accurate in settings with limited training data.		Accuracy (5-fold CV)	93.6	97.7
	Hypoglycemia (UCI Diabetes dataset. User 55. 10 examples)	# Rules (Mode)	5	3
		Accuracy (LOOCV)	80.0	60.0

Future Work

Incorporating interventions could be a window into learning causal relationships, and advice about context-specific independences may be helpful in the limited data settings.

References

[1] Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Mach Intelligence, (2019) [2] Schreiber JM and Noble WS. *Finding the optimal Bayesian network given a constraint* graph. PeerJ Computer Science, (2017) [3] Gopalakrishnan, V., et al. *Bayesian rule learning for biomedical data mining*. Bioinformatics, Volume 26, Issue 5, (2010)

This work was funded by the US Department of Defense (Contract W52P1J2093009).